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Simplicial Complexes
An abstract simplicial complex is a set ∆ of subsets of some S satisfying:

X ∈ ∆ and Y ⊆ X =⇒ Y ∈ ∆.

S = a, b, c , d , e, f , g and

∆ ={{a, b, c , d}, {c , d , e}, {e, f , g}

, {a, b, c}, {a, b, d}, {b, c , d},
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {c , e}, {d , e}, {e, f },
{e, g}, {f , g}, {a}, {b}, {c}, {d}, {e}, {f }, {g}, ∅}

a

b

c

d e f

g

dim∆ = 3 and non-pure
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Homotopy and Homology

Two complexes are homotopy equivalent if we can ”continuously deform”
one into the other.

Contractible =⇒ homotopy equivalent to a point: ≃

The i ’th (reduced) Betti number β̃i (∆) is the number of i-dimensional
”holes” and (reduced) Euler characteristic is χ̃(∆) =

∑dim∆
i=−1 (−1)iβi (∆)
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hollow β̃−1 = 0

β̃0 = 0

β̃1 = 2

β̃2 = 1

χ̃ = −1
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Graphs and the Colouring Problem

a

b

c

d

e

f

Given a graph G how many colours do we need to colour the vertices of
the graph so that no edge connects to two vertices of the same colour?

Chromatic number χ(G ) = 3
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Graphs to Simplicial Complexes
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Other Complexes and Applications

Bipartite Complex Bip(G) ≃ N (G)

Independence Complex Ind(G) ≃ Cl(Ḡ)

Colouring Complex

Hom Complex Hom(G,H)

Lovász Complex Lo(G ) := ∆(N(F(N (G ))))

Graphs in Metric Spaces such as Rips Complex, Alpha Complex,
Witness Complex . . .

More . . .
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Posets to Simplicial Complexes

c

a

e

g h

d
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f

c a

g h
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e

d f

Chains of a poset are the totally
ordered subsets.
E.g. {a < c < g} and {b < h}.

Chains of a poset P give faces of the
Order Complex ∆(P).
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Möbius function

The Möbius function for a poset is defined as µ(a, b) = 0 if a ̸≤ b,
µ(a, a) = 1 for all a and for a < b:

µ(a, b) = −
∑

a≤z<b

µ(a, z).

To calculate µ(P) add a top and bottom element 1̂ and 0̂.

P =

1

−1 −1 −1

2 1

−1

µ(P) = −1
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Applications

Lemma

µ(P) = χ̃(∆(P))

∆(P) ≃ ∆(Q) =⇒ µ(P) = µ(Q)

µ = −1

∆ ∆

µ = −1

≃
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Applications

∆(Z ) = ∆(P) \∆(Q) =⇒ µ(Z ) = µ(P)− µ(Q)

∆(P) = susp(∆(Q)) =⇒ µ(P) = −µ(Q)

∆(Z ) = ∆(P) ∪∆(Q) =⇒ µ(Z ) = µ(P) + µ(Q)− µ(P ∩ Q)

∆(Z ) = ∆(P)×∆(Q) =⇒ µ(Z ) = µ(P)µ(Q)

∆(Z ) = ∆(P) ⋆∆(Q) =⇒ µ(Z ) = µ(P)µ(Q)
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A Nice Counting Application of the Möbius Function

Let [n] := {1, . . . , n} and X k := {x ⊆ [n] | |x | = k} compute
∑
A⊆X k

∪A=[n]

(−1)|A|

µ(Bn) = (−1)n and µ(B≥k
n ) = (−1)n−k−1

(
n − 1

k − 1

)
∑
A⊆X k

∪A=[n]

(−1)|A| = (−1)n−k−1

(
n − 1

k − 1

)
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Let [n] := {1, . . . , n} and X k := {x ⊆ [n] | |x | = k} compute
∑
A⊆X k

∪A=[n]

(−1)|A|

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}

0̂

B≥2
4

µ(Bn) = (−1)n and µ(B≥k
n ) = (−1)n−k−1

(
n − 1

k − 1

)
∑
A⊆X k

∪A=[n]

(−1)|A| = (−1)n−k−1

(
n − 1

k − 1

)
Jason P Smith (University of Strathclyde) Combinatorial Algebraic Topology. . . 12 / 21



Permutation Patterns

Single line notation for permutations i.e 241365.

An occurrence of σ in π is a subsequence of π with the same relative order
of size as the letters in σ
e.g. 132 occurs twice in 231.

Permutation poset P contains all permutations and σ ≤ π if σ occurs in π.
An interval of P is [σ, π] = {τ |σ ≤ τ ≤ π}, rank = |π| − |σ|.

In 1968 Donald Knuth showed the permutations that can be sorted by a
stack are the permutations that avoid 231

Lots of work in enumerating avoidance of permutations. Studying the
Möbius function and topology of P can help with this.
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The Interval [123, 4567123]

123
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Previous Results

The direct sum is σ ⊕ π = σ1 . . . σm(π1 +m) . . . (πn +m), for example,
312⊕ 213 = 312546.

(Sagan and Vatter, 2006): Intervals of layered permutations, that is,
permutations that are the direct sum of two or more decreasing
permutations.

(Burstein, Jeĺınek, Jeĺınek and Steingŕımsson, 2011):
▶ Intervals of separable permutations, that is, permutations that avoid

2413 and 3142.
▶ Intervals of decomposable permutations, that is, permutations that can

be written as the direct sum of two or more non-empty permutations.

(Smith, 2014): Intervals of permutations with a fixed number of
descents is given, where a descent occurs at i if πi > πi+1,
e.g. 23154.

Very few intervals satisfy these properties. But there is a common theme
of normal embeddings.
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Example

Lemma

If π has exactly one descent then µ(1, π) = −µ(21, π).

(21, π)

21
12

123

12

∆(1, π) ≃ susp(∆(21, π)) =⇒ µ(1, π) = −µ(21, π)
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Normal Occurrences

The adjacencies of a permutation are 23165478.

The tails are 23165478.

Definition

An occurrence of σ in π is normal if it includes all the tails of all the
adjacencies of π.

The occurrences of 124356 in 23165478 are 236578, 236478 and 235478.
The only normal occurrence is 235478, so NE(124356, 23165478) = 1.
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Breakdown Permutation: [132, 413265]
32154 13254 31254 41325

2143 1243 4132

413265 → 4|1|32|65 → (1, 1, 21, 21)

{132, 465, 165, 265} → {013200, 400065, 010065, 000265}
013200 → 0|1|32|00 → (∅, 1, 21, ∅)
{(∅, 1, 21, ∅), (1, ∅, ∅, 21), (∅, 1, ∅, 21), (∅, ∅, 1, 21)}
P(013200) = [∅, 1]× [1, 1]× [21, 21]× [∅, 21]
µ(P(013200)) = µ(∅, 1)µ(1, 1)µ(21, 21)µ(∅, 21) = (−1)(1)(1)(0) = 0

µ(P(η)) =

{
0, η not normal

−1|π|−|σ|, η normal
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Breakdown Permutation: [132, 413265]

(∅, 1, 21, ∅)

(1, 1, 21, ∅) (∅, 1, 21, 1)
(1, 1, 21, 1) (∅, 1, 21, 21)

(1, 1, 21, 21)

P(013200)

(1, ∅, ∅, 21)

(1, 1, ∅, 21) (1, ∅, 1, 21)
(1, 1, 1, 21) (1, ∅, 21, 21)

(1, 1, 21, 21)

P(400065)

(∅, 1, ∅, 21)

(1, 1, ∅, 21) (∅, 1, 1, 21)
(1, 1, 1, 21) (∅, 1, 21, 21)

(1, 1, 21, 21)

P(010065)

(∅, ∅, 1, 21)

(1, ∅, 1, 21) (∅, 1, 1, 21)
(∅, ∅, 21, 21)

(1, 1, 1, 21)
(1, ∅, 21, 21) (∅, 1, 21, 21)

(1, 1, 21, 21)

P(000265)
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Breakdown Permutation: [132, 413265]

Aσ,π :=
⋃

η∈Eσ,π

P(η)o

(∅, 1, 21, 21)

4|1|32|6513254

(1, 1, 1, 21)

31254

(1, ∅, 21, 21)

32154

(1, 1, 21, 1)

41325

(∅, 1, 1, 21)

1243

(∅, ∅, 21, 21)

2143

(1, 1, ∅, 21)

2143

(∅, 1, 21, 1)

1243

(1, ∅, 1, 21)

2143

(1, 1, 21, ∅)

4132

A132,413265
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µ(Aσ,π) =
∑

η∈Êσ,π

µ(P(η))−
∑

S⊆Êσ,π

|S |>1

(−1)|S |µ(
⋂
η∈S

P(η))

= (−1)|π|−|σ|NE(σ, π)−W (σ, π)
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Breakdown Permutation: [132, 413265]

13254 31254 32154 41325

1243 2143 2143 1243 2143 4132

µ(Aσ,π)
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Breakdown Permutation: [132, 413265]

13254 31254 32154 41325

1243 2143 1243 4132

µ(Aσ,π)− µ(W (σ, 2143))µ(W (2143, π))

Jason P Smith (University of Strathclyde) Combinatorial Algebraic Topology. . . 20 / 21



Breakdown Permutation: [132, 413265]

µ(Aσ,π)− µ(W (σ, 2143))µ(W (2143, π))
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Breakdown Permutation: [132, 413265]

13254 31254 32154 41325

1243
12432143 4132

µ(Aσ,π)− µ(W (σ, 2143))µ(W (2143, π))

− µ(W (σ, 1243))µ(W (1243, π)) = µ(σ, π)
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Breakdown Permutation: [132, 413265]

13254 31254 32154 41325

1243
12432143 4132

µ(σ, π) = (−1)|π|−|σ|NE(σ, π)−
∑

λ∈[σ,π)

W (σ, λ)W (λ, π)

1
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Consequences

µ(σ, π) = (−1)|π|−|σ|NE(σ, π)−
∑

λ∈[σ,π)

W (σ, λ)W (λ, π).

Second term equals zero for 95% of intervals [σ, π] where |π| < 9.

Can compute Möbius function of rank 15 interval in 5 minutes
compared to 14 hours using recursive formula.

First part has polynomial complexity and second part exponential
complexity. Recursive formula has exponential complexity.

Thank You For Listening
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