Combinatorial Algebraic Topology and its Applications to Permutation Patterns

Jason P Smith

University of Strathclyde

ヨト イヨト

Overview

Introduction to Combinatorial Algebraic Topology

- Basic Topology
- Graphs to Simplicial Complexes
- Posets to Simplicial Complexes

Permutation Patterns

- Introduction and Motivation
- Applying Combinatorial Algebraic Topology

Kozlov, Dimitry. *Combinatorial algebraic topology*. Vol. 21. Springer Science & Business Media, 2008.

An *abstract simplicial complex* is a set Δ of subsets of some *S* satisfying:

 $X \in \Delta$ and $Y \subseteq X \implies Y \in \Delta$.

イロト 不得 トイヨト イヨト

An *abstract simplicial complex* is a set Δ of subsets of some *S* satisfying:

$$X \in \Delta$$
 and $Y \subseteq X \implies Y \in \Delta$.

S = a, b, c, d, e, f, g and

 $\Delta = \{\{a, b, c, d\}, \{c, d, e\}, \{e, f, g\}$

A B M A B M

An abstract simplicial complex is a set Δ of subsets of some S satisfying:

$$X \in \Delta$$
 and $Y \subseteq X \implies Y \in \Delta$.

S = a, b, c, d, e, f, g and

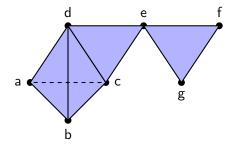
$$\begin{split} \Delta =& \{\{a, b, c, d\}, \{c, d, e\}, \{e, f, g\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \\ & \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{c, e\}, \{d, e\}, \{e, f\}, \\ & \{e, g\}, \{f, g\}, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \emptyset\} \end{split}$$

An abstract simplicial complex is a set Δ of subsets of some S satisfying:

$$X \in \Delta$$
 and $Y \subseteq X \implies Y \in \Delta$.

S = a, b, c, d, e, f, g and

$$\begin{split} \Delta =& \{\{a, b, c, d\}, \{c, d, e\}, \{e, f, g\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \\ & \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{c, e\}, \{d, e\}, \{e, f\}, \\ & \{e, g\}, \{f, g\}, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \emptyset\} \end{split}$$

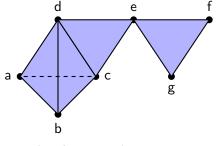


An abstract simplicial complex is a set Δ of subsets of some S satisfying:

$$X \in \Delta$$
 and $Y \subseteq X \implies Y \in \Delta$.

S = a, b, c, d, e, f, g and

$$\begin{split} \Delta =& \{\{a, b, c, d\}, \{c, d, e\}, \{e, f, g\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \\ & \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{c, e\}, \{d, e\}, \{e, f\}, \\ & \{e, g\}, \{f, g\}, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \emptyset\} \end{split}$$



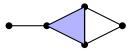
dim $\Delta = 3$ and non-pure

Two complexes are *homotopy equivalent* if we can "continuously deform" one into the other.

<日

<</p>

Two complexes are *homotopy equivalent* if we can "continuously deform" one into the other.

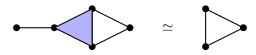


Two complexes are *homotopy equivalent* if we can "continuously deform" one into the other.

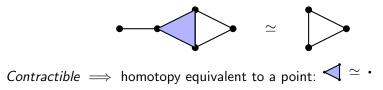
<日

<</p>

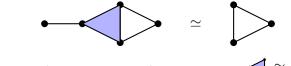
Two complexes are *homotopy equivalent* if we can "continuously deform" one into the other.



Two complexes are *homotopy equivalent* if we can "continuously deform" one into the other.



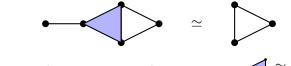
Two complexes are *homotopy equivalent* if we can "continuously deform" one into the other.



Contractible \implies homotopy equivalent to a point: $\blacktriangleleft \simeq \cdot$

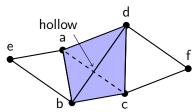
The *i*'th (reduced) *Betti number* $\tilde{\beta}_i(\Delta)$ is the number of *i*-dimensional "holes" and (reduced) *Euler characteristic* is $\tilde{\chi}(\Delta) = \sum_{i=-1}^{\dim \Delta} (-1)^i \beta_i(\Delta)$

Two complexes are *homotopy equivalent* if we can "continuously deform" one into the other.

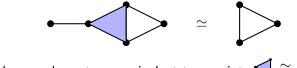


Contractible \implies homotopy equivalent to a point: $\blacktriangleleft \simeq \cdot$

The *i*'th (reduced) Betti number $\tilde{\beta}_i(\Delta)$ is the number of *i*-dimensional "holes" and (reduced) Euler characteristic is $\tilde{\chi}(\Delta) = \sum_{i=-1}^{\dim \Delta} (-1)^i \beta_i(\Delta)$

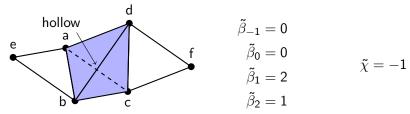


Two complexes are *homotopy equivalent* if we can "continuously deform" one into the other.



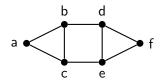
Contractible \implies homotopy equivalent to a point: $\blacktriangleleft \simeq \cdot$

The *i*'th (reduced) Betti number $\tilde{\beta}_i(\Delta)$ is the number of *i*-dimensional "holes" and (reduced) Euler characteristic is $\tilde{\chi}(\Delta) = \sum_{i=-1}^{\dim \Delta} (-1)^i \beta_i(\Delta)$



伺 ト く ヨ ト く ヨ ト

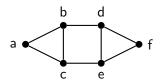
Graphs and the Colouring Problem



() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

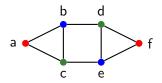
< 1 k

Graphs and the Colouring Problem



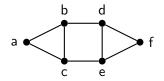
Given a graph G how many colours do we need to colour the vertices of the graph so that no edge connects to two vertices of the same colour?

Graphs and the Colouring Problem



Given a graph G how many colours do we need to colour the vertices of the graph so that no edge connects to two vertices of the same colour? Chromatic number $\chi(G) = 3$

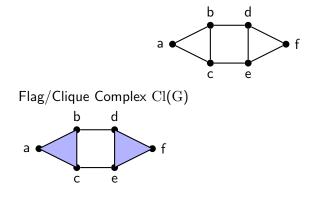
Graphs to Simplicial Complexes



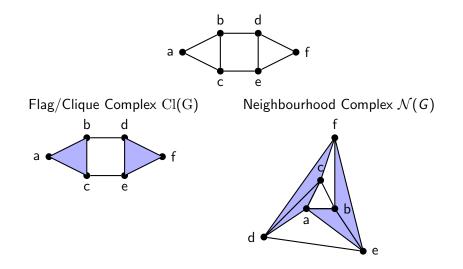
A B A A B A

< 1 k

Graphs to Simplicial Complexes



Graphs to Simplicial Complexes



э

イロト イポト イヨト イヨト

• Bipartite Complex $\operatorname{Bip}(G) \simeq \mathcal{N}(G)$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Bipartite Complex $Bip(G) \simeq \mathcal{N}(G)$
- \bullet Independence Complex $\mathrm{Ind}(\mathrm{G})\simeq \mathrm{Cl}(\bar{\mathrm{G}})$

(1日) (1日) (1日)

- Bipartite Complex $Bip(G) \simeq \mathcal{N}(G)$
- \bullet Independence Complex $\mathrm{Ind}(\mathrm{G})\simeq\mathrm{Cl}(\bar{\mathrm{G}})$
- Colouring Complex

・ 同 ト ・ ヨ ト ・ ヨ ト

- Bipartite Complex $\operatorname{Bip}(G) \simeq \mathcal{N}(G)$
- \bullet Independence Complex $\mathrm{Ind}(\mathrm{G})\simeq \mathrm{Cl}(\bar{\mathrm{G}})$
- Colouring Complex
- $\bullet \ \mbox{Hom}\ \mbox{Complex}\ \mbox{Hom}\ \mbox{(G,H)}$

<日

<</p>

- Bipartite Complex $\operatorname{Bip}(G) \simeq \mathcal{N}(G)$
- Independence Complex $\mathrm{Ind}(\mathrm{G})\simeq \mathrm{Cl}(\bar{\mathrm{G}})$
- Colouring Complex
- Hom Complex Hom(G, H)
- Lovász Complex $\mathcal{L}o(G) := \Delta(N(\mathcal{F}(\mathcal{N}(G))))$

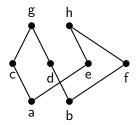
▲ ศ 🛛 ト ▲ 三 ト

- Bipartite Complex $\operatorname{Bip}(G) \simeq \mathcal{N}(G)$
- Independence Complex $\mathrm{Ind}(\mathrm{G})\simeq \mathrm{Cl}(\bar{\mathrm{G}})$
- Colouring Complex
- Hom Complex Hom(G, H)
- Lovász Complex $\mathcal{L}o(G) := \Delta(N(\mathcal{F}(\mathcal{N}(G))))$
- Graphs in Metric Spaces such as Rips Complex, Alpha Complex, Witness Complex . . .

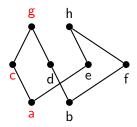
▲ ศ 🛛 ト ▲ 三 ト

- Bipartite Complex $\operatorname{Bip}(G) \simeq \mathcal{N}(G)$
- \bullet Independence Complex $\mathrm{Ind}(\mathrm{G})\simeq\mathrm{Cl}(\bar{\mathrm{G}})$
- Colouring Complex
- Hom Complex Hom(G, H)
- Lovász Complex $\mathcal{L}o(G) := \Delta(N(\mathcal{F}(\mathcal{N}(G))))$
- Graphs in Metric Spaces such as Rips Complex, Alpha Complex, Witness Complex . . .
- More . . .

< 回 > < 回 > < 回 >

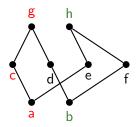


▲ □ ▶ ▲ □ ▶ ▲ □ ▶



Chains of a poset are the totally ordered subsets. E.g. $\{a < c < g\}$

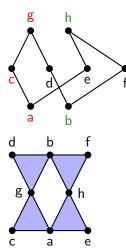
- E > - E >



Chains of a poset are the totally ordered subsets.

E.g. $\{a < c < g\}$ and $\{b < h\}$.

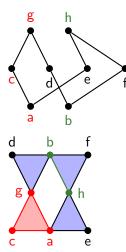
< ∃ ►



Chains of a poset are the totally ordered subsets.

E.g. $\{a < c < g\}$ and $\{b < h\}$.

Chains of a poset *P* give faces of the Order Complex $\Delta(P)$.



Chains of a poset are the totally ordered subsets. E.g. $\{a < c < g\}$ and $\{b < h\}$.

Chains of a poset *P* give faces of the Order Complex $\Delta(P)$.

Möbius function

The *Möbius function* for a poset is defined as $\mu(a, b) = 0$ if $a \leq b$, $\mu(a, a) = 1$ for all a and for a < b:

$$\mu(\mathsf{a},\mathsf{b}) = -\sum_{\mathsf{a} \leq z < b} \mu(\mathsf{a},z).$$

To calculate $\mu(P)$ add a top and bottom element $\hat{1}$ and $\hat{0}$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Möbius function

The *Möbius function* for a poset is defined as $\mu(a, b) = 0$ if $a \leq b$, $\mu(a, a) = 1$ for all *a* and for a < b:

$$\mu(\mathsf{a},\mathsf{b}) = -\sum_{\mathsf{a} \leq z < b} \mu(\mathsf{a},z).$$

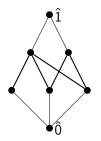
To calculate $\mu(P)$ add a top and bottom element $\hat{1}$ and $\hat{0}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The *Möbius function* for a poset is defined as $\mu(a, b) = 0$ if $a \leq b$, $\mu(a, a) = 1$ for all a and for a < b:

$$\mu(a,b) = -\sum_{a \leq z < b} \mu(a,z).$$

To calculate $\mu(P)$ add a top and bottom element $\hat{1}$ and $\hat{0}$.

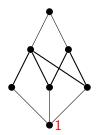


A B A A B A

The *Möbius function* for a poset is defined as $\mu(a, b) = 0$ if $a \leq b$, $\mu(a, a) = 1$ for all *a* and for a < b:

$$\mu(\mathsf{a},\mathsf{b}) = -\sum_{\mathsf{a} \leq z < b} \mu(\mathsf{a},z).$$

To calculate $\mu(P)$ add a top and bottom element $\hat{1}$ and $\hat{0}$.

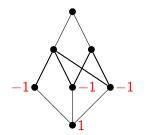


A B K A B K

The *Möbius function* for a poset is defined as $\mu(a, b) = 0$ if $a \leq b$, $\mu(a, a) = 1$ for all *a* and for a < b:

$$\mu(\mathsf{a},\mathsf{b}) = -\sum_{\mathsf{a} \leq z < b} \mu(\mathsf{a},z).$$

To calculate $\mu(P)$ add a top and bottom element $\hat{1}$ and $\hat{0}$.

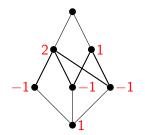


- E > - E >

The *Möbius function* for a poset is defined as $\mu(a, b) = 0$ if $a \leq b$, $\mu(a, a) = 1$ for all *a* and for a < b:

$$\mu(\mathsf{a},\mathsf{b}) = -\sum_{\mathsf{a} \leq z < b} \mu(\mathsf{a},z).$$

To calculate $\mu(P)$ add a top and bottom element $\hat{1}$ and $\hat{0}$.

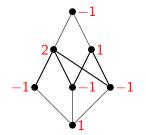


- E > - E >

The *Möbius function* for a poset is defined as $\mu(a, b) = 0$ if $a \leq b$, $\mu(a, a) = 1$ for all a and for a < b:

$$\mu(\mathsf{a},\mathsf{b}) = -\sum_{\mathsf{a} \leq z < b} \mu(\mathsf{a},z).$$

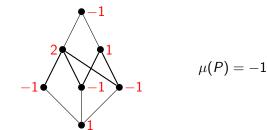
To calculate $\mu(P)$ add a top and bottom element $\hat{1}$ and $\hat{0}$.



The *Möbius function* for a poset is defined as $\mu(a, b) = 0$ if $a \leq b$, $\mu(a, a) = 1$ for all *a* and for a < b:

$$\mu(\mathsf{a},\mathsf{b}) = -\sum_{\mathsf{a} \leq z < b} \mu(\mathsf{a},z).$$

To calculate $\mu(P)$ add a top and bottom element $\hat{1}$ and $\hat{0}$.



.

Lemma

$$\mu(P) = \tilde{\chi}(\Delta(P))$$

3

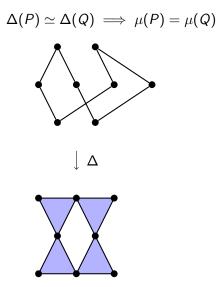
<ロト <回ト < 回ト < 回ト < 回ト -

$$\Delta(P) \simeq \Delta(Q) \implies \mu(P) = \mu(Q)$$

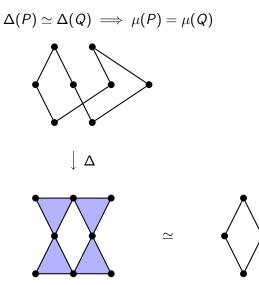
2

 $\Delta(P) \simeq \Delta(Q) \implies \mu(P) = \mu(Q)$

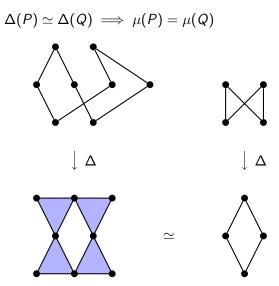
э



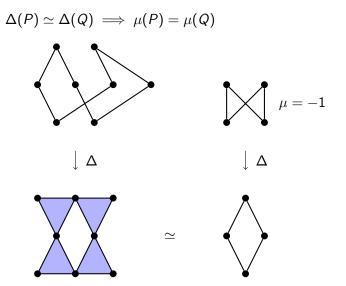
э



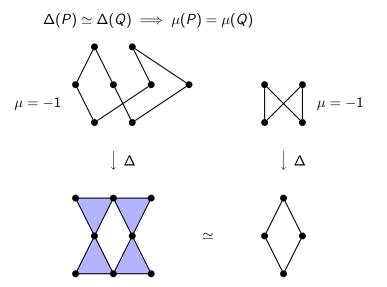
э



э



э



3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

$\Delta(Z) = \Delta(P) \setminus \Delta(Q) \implies \mu(Z) = \mu(P) - \mu(Q)$

3

$$\Delta(Z) = \Delta(P) \setminus \Delta(Q) \implies \mu(Z) = \mu(P) - \mu(Q)$$

 $\Delta(P) = \operatorname{susp}(\Delta(Q)) \implies \mu(P) = -\mu(Q)$

2

$$\Delta(Z) = \Delta(P) \setminus \Delta(Q) \implies \mu(Z) = \mu(P) - \mu(Q)$$

 $\Delta(P) = \operatorname{susp}(\Delta(Q)) \implies \mu(P) = -\mu(Q)$

$$\Delta(Z) = \Delta(P) \cup \Delta(Q) \implies \mu(Z) = \mu(P) + \mu(Q) - \mu(P \cap Q)$$

2

$$\Delta(Z) = \Delta(P) \setminus \Delta(Q) \implies \mu(Z) = \mu(P) - \mu(Q)$$
$$\Delta(P) = \operatorname{susp}(\Delta(Q)) \implies \mu(P) = -\mu(Q)$$
$$\Delta(Z) = \Delta(P) \cup \Delta(Q) \implies \mu(Z) = \mu(P) + \mu(Q) - \mu(P \cap Q)$$
$$\Delta(Z) = \Delta(P) \times \Delta(Q) \implies \mu(Z) = \mu(P)\mu(Q)$$

2

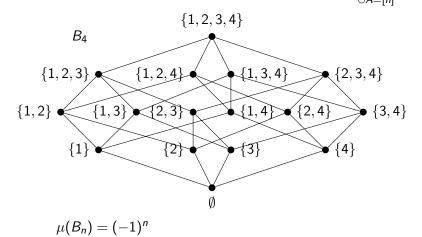
$$\Delta(Z) = \Delta(P) \setminus \Delta(Q) \implies \mu(Z) = \mu(P) - \mu(Q)$$
$$\Delta(P) = \operatorname{susp}(\Delta(Q)) \implies \mu(P) = -\mu(Q)$$
$$\Delta(Z) = \Delta(P) \cup \Delta(Q) \implies \mu(Z) = \mu(P) + \mu(Q) - \mu(P \cap Q)$$
$$\Delta(Z) = \Delta(P) \times \Delta(Q) \implies \mu(Z) = \mu(P)\mu(Q)$$
$$\Delta(Z) = \Delta(P) \star \Delta(Q) \implies \mu(Z) = \mu(P)\mu(Q)$$

2

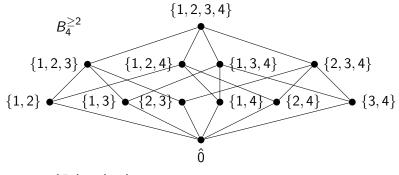
Proposition (Crosscut Theorem)

Consider poset *P* and subset *X* s.t $\forall p \in P \exists x \in X \text{ s.t } p \ge x$, then:

$$\mu(\hat{0},\hat{1}) = \sum_{\substack{A \subseteq X \\ \lor A = \hat{1}}} (-1)^{|A|}.$$

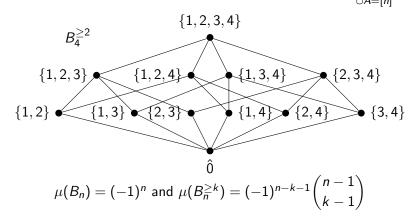


・ 何 ト ・ ヨ ト ・ ヨ ト

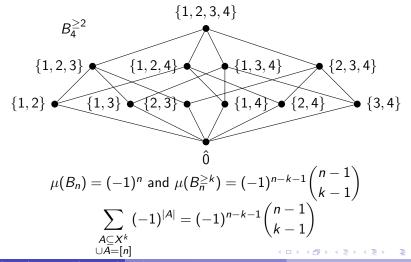


 $\mu(B_n)=(-1)^n$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶



(4) (日本)



Jason P Smith (University of Strathclyde)

Combinatorial Algebraic Topology...

Single line notation for permutations i.e 241365.

・ 同 ト ・ ヨ ト ・ ヨ ト

Single line notation for permutations i.e 241365.

An *occurrence* of σ in π is a subsequence of π with the same relative order of size as the letters in σ e.g. 132 occurs twice in 23541.

Single line notation for permutations i.e 241365.

An occurrence of σ in π is a subsequence of π with the same relative order of size as the letters in σ e.g. 132 occurs twice in 23541.

Single line notation for permutations i.e 241365.

An occurrence of σ in π is a subsequence of π with the same relative order of size as the letters in σ

e.g. 132 occurs twice in 23541.

Single line notation for permutations i.e 241365.

An occurrence of σ in π is a subsequence of π with the same relative order of size as the letters in σ

e.g. 132 occurs twice in 23541.

Permutation poset \mathcal{P} contains all permutations and $\sigma \leq \pi$ if σ occurs in π . An *interval* of \mathcal{P} is $[\sigma, \pi] = \{\tau \mid \sigma \leq \tau \leq \pi\}$, rank $= |\pi| - |\sigma|$.

Single line notation for permutations i.e 241365.

An occurrence of σ in π is a subsequence of π with the same relative order of size as the letters in σ e.g. 132 occurs twice in 23541.

Permutation poset \mathcal{P} contains all permutations and $\sigma \leq \pi$ if σ occurs in π . An *interval* of \mathcal{P} is $[\sigma, \pi] = \{\tau \mid \sigma \leq \tau \leq \pi\}$, rank $= |\pi| - |\sigma|$.

In 1968 Donald Knuth showed the permutations that can be sorted by a stack are the permutations that avoid 231

(1) マン・ション・ (1) マン・

Single line notation for permutations i.e 241365.

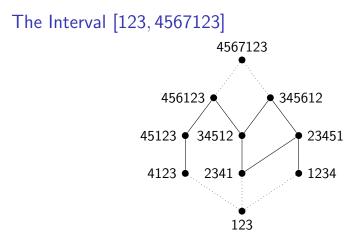
An occurrence of σ in π is a subsequence of π with the same relative order of size as the letters in σ e.g. 132 occurs twice in 23541.

Permutation poset \mathcal{P} contains all permutations and $\sigma \leq \pi$ if σ occurs in π . An *interval* of \mathcal{P} is $[\sigma, \pi] = \{\tau \mid \sigma \leq \tau \leq \pi\}$, rank $= |\pi| - |\sigma|$.

In 1968 Donald Knuth showed the permutations that can be sorted by a stack are the permutations that avoid 231

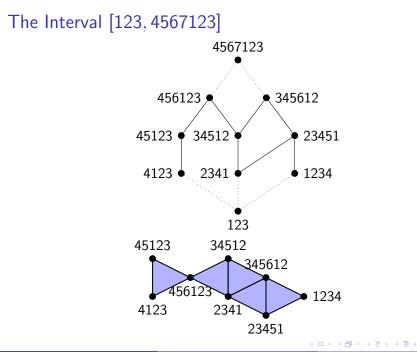
Lots of work in enumerating avoidance of permutations. Studying the Möbius function and topology of ${\cal P}$ can help with this.

イロト イヨト イヨト 一座

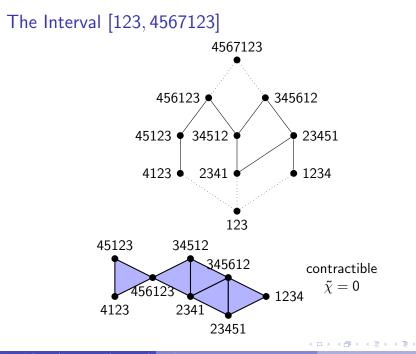


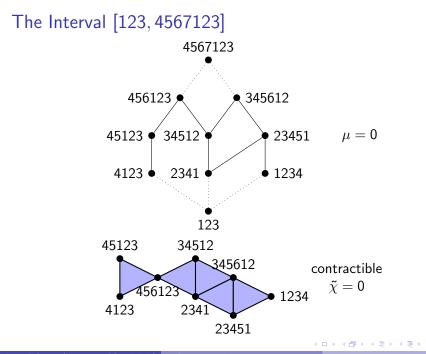
э

▲冊▶ ▲ 臣▶ ▲ 臣▶



э





Jason P Smith (University of Strathclyde) Combinatorial Algebraic Topology...

3

イロト イヨト イヨト イヨト

The direct sum is $\sigma \oplus \pi = \sigma_1 \dots \sigma_m(\pi_1 + m) \dots (\pi_n + m)$, for example, $312 \oplus 213 = 312546$.

э

イロト 不得 トイヨト イヨト

The direct sum is $\sigma \oplus \pi = \sigma_1 \dots \sigma_m(\pi_1 + m) \dots (\pi_n + m)$, for example, $312 \oplus 213 = 312546$.

- (Sagan and Vatter, 2006): Intervals of *layered* permutations, that is, permutations that are the direct sum of two or more decreasing permutations.
- (Burstein, Jelínek, Jelínek and Steingrímsson, 2011):
 - Intervals of *separable* permutations, that is, permutations that avoid 2413 and 3142.
 - Intervals of *decomposable* permutations, that is, permutations that can be written as the direct sum of two or more non-empty permutations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The direct sum is $\sigma \oplus \pi = \sigma_1 \dots \sigma_m(\pi_1 + m) \dots (\pi_n + m)$, for example, $312 \oplus 213 = 312546$.

- (Sagan and Vatter, 2006): Intervals of *layered* permutations, that is, permutations that are the direct sum of two or more decreasing permutations.
- (Burstein, Jelínek, Jelínek and Steingrímsson, 2011):
 - Intervals of *separable* permutations, that is, permutations that avoid 2413 and 3142.
 - Intervals of *decomposable* permutations, that is, permutations that can be written as the direct sum of two or more non-empty permutations.
- (Smith, 2014): Intervals of permutations with a fixed number of descents is given, where a *descent* occurs at *i* if π_i > π_{i+1}, e.g. 23154.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

The direct sum is $\sigma \oplus \pi = \sigma_1 \dots \sigma_m(\pi_1 + m) \dots (\pi_n + m)$, for example, $312 \oplus 213 = 312546$.

- (Sagan and Vatter, 2006): Intervals of *layered* permutations, that is, permutations that are the direct sum of two or more decreasing permutations.
- (Burstein, Jelínek, Jelínek and Steingrímsson, 2011):
 - Intervals of *separable* permutations, that is, permutations that avoid 2413 and 3142.
 - Intervals of *decomposable* permutations, that is, permutations that can be written as the direct sum of two or more non-empty permutations.
- (Smith, 2014): Intervals of permutations with a fixed number of descents is given, where a *descent* occurs at *i* if π_i > π_{i+1}, e.g. 23154.

Very few intervals satisfy these properties. But there is a common theme of *normal embeddings*.

イロト 不得下 イヨト イヨト 二日

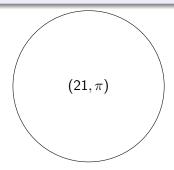
Lemma

If π has exactly one descent then $\mu(1,\pi) = -\mu(21,\pi)$.

э

Lemma

If π has exactly one descent then $\mu(1,\pi) = -\mu(21,\pi)$.

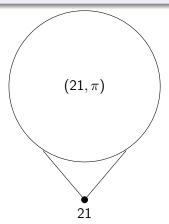


э

イロト イポト イヨト イヨト

Lemma

If π has exactly one descent then $\mu(1,\pi) = -\mu(21,\pi)$.

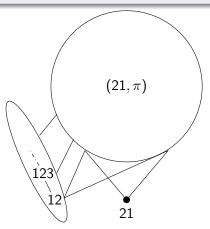


э

イロト イポト イヨト イヨト

Lemma

If π has exactly one descent then $\mu(1,\pi) = -\mu(21,\pi)$.

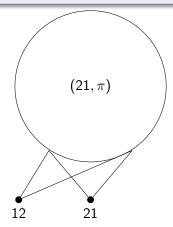


э

イロト イボト イヨト イヨト

Lemma

If π has exactly one descent then $\mu(1,\pi) = -\mu(21,\pi)$.

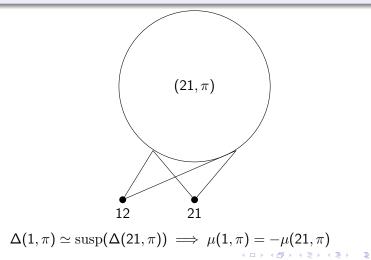


э

イロト イポト イヨト イヨト

Lemma

If π has exactly one descent then $\mu(1,\pi) = -\mu(21,\pi)$.



The adjacencies of a permutation are 23165478.

э

The *adjacencies* of a permutation are 23165478. The *tails* are 23165478.

э

The *adjacencies* of a permutation are 23165478. The *tails* are 23165478.

Definition

An occurrence of σ in π is *normal* if it includes all the tails of all the adjacencies of π .

The *adjacencies* of a permutation are 23165478. The *tails* are 23165478.

Definition

An occurrence of σ in π is *normal* if it includes all the tails of all the adjacencies of π .

The occurrences of 124356 in 23165478 are 236578, 236478 and 235478.

The *adjacencies* of a permutation are 23165478. The *tails* are 23165478.

Definition

An occurrence of σ in π is *normal* if it includes all the tails of all the adjacencies of π .

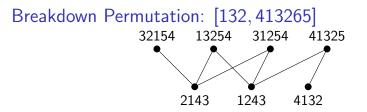
The occurrences of 124356 in 23165478 are 236578, 236478 and 235478. The only normal occurrence is 235478

The *adjacencies* of a permutation are 23165478. The *tails* are 23165478.

Definition

An occurrence of σ in π is *normal* if it includes all the tails of all the adjacencies of π .

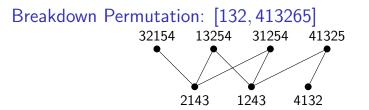
The occurrences of 124356 in 23165478 are 236578, 236478 and 235478. The only normal occurrence is 235478, so NE(124356, 23165478) = 1.



$413265 \rightarrow 4|1|32|65 \rightarrow (1, 1, 21, 21)$

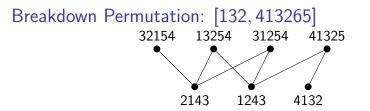
э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶



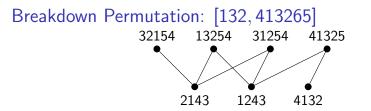
 $\begin{array}{l} 413265 \rightarrow 4|1|32|65 \rightarrow (1,1,21,21) \\ \{132,465,165,265\} \rightarrow \{013200,400065,010065,000265\} \end{array}$

一回 ト イヨト イヨト

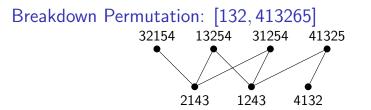


$$\begin{split} &413265 \rightarrow 4|1|32|65 \rightarrow (1,1,21,21) \\ &\{132,465,165,265\} \rightarrow \{013200,400065,010065,000265\} \\ &013200 \rightarrow 0|1|32|00 \rightarrow (\emptyset,1,21,\emptyset) \end{split}$$

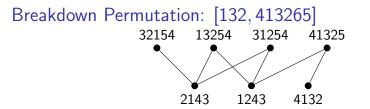
.



$$\begin{split} &413265 \rightarrow 4|1|32|65 \rightarrow (1,1,21,21) \\ &\{132,465,165,265\} \rightarrow \{013200,400065,010065,000265\} \\ &013200 \rightarrow 0|1|32|00 \rightarrow (\emptyset,1,21,\emptyset) \\ &\{(\emptyset,1,21,\emptyset),(1,\emptyset,\emptyset,21),(\emptyset,1,\emptyset,21),(\emptyset,\emptyset,1,21)\} \end{split}$$

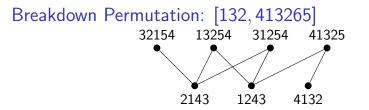


 $\begin{aligned} &413265 \rightarrow 4|1|32|65 \rightarrow (1, 1, 21, 21) \\ &\{132, 465, 165, 265\} \rightarrow \{013200, 400065, 010065, 000265\} \\ &013200 \rightarrow 0|1|32|00 \rightarrow (\emptyset, 1, 21, \emptyset) \\ &\{(\emptyset, 1, 21, \emptyset), (1, \emptyset, \emptyset, 21), (\emptyset, 1, \emptyset, 21), (\emptyset, \emptyset, 1, 21)\} \\ &P(013200) = [\emptyset, 1] \times [1, 1] \times [21, 21] \times [\emptyset, 21] \end{aligned}$



$$\begin{split} &413265 \rightarrow 4|1|32|65 \rightarrow (1, 1, 21, 21) \\ &\{132, 465, 165, 265\} \rightarrow \{013200, 400065, 010065, 000265\} \\ &013200 \rightarrow 0|1|32|00 \rightarrow (\emptyset, 1, 21, \emptyset) \\ &\{(\emptyset, 1, 21, \emptyset), (1, \emptyset, \emptyset, 21), (\emptyset, 1, \emptyset, 21), (\emptyset, \emptyset, 1, 21)\} \\ &P(013200) = [\emptyset, 1] \times [1, 1] \times [21, 21] \times [\emptyset, 21] \\ &\mu(P(013200)) = \mu(\emptyset, 1)\mu(1, 1)\mu(21, 21)\mu(\emptyset, 21) = (-1)(1)(1)(0) = 0 \end{split}$$

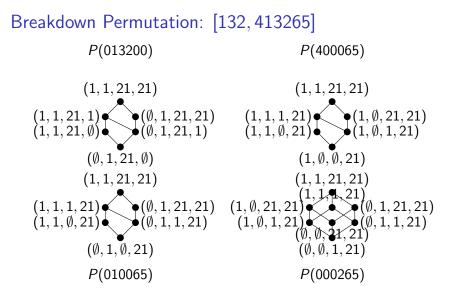
伺 ト く ヨ ト く ヨ ト



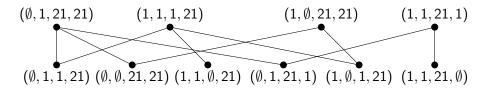
$$\begin{split} &413265 \rightarrow 4|1|32|65 \rightarrow (1, 1, 21, 21) \\ &\{132, 465, 165, 265\} \rightarrow \{013200, 400065, 010065, 000265\} \\ &013200 \rightarrow 0|1|32|00 \rightarrow (\emptyset, 1, 21, \emptyset) \\ &\{(\emptyset, 1, 21, \emptyset), (1, \emptyset, \emptyset, 21), (\emptyset, 1, \emptyset, 21), (\emptyset, \emptyset, 1, 21)\} \\ &P(013200) = [\emptyset, 1] \times [1, 1] \times [21, 21] \times [\emptyset, 21] \\ &\mu(P(013200)) = \mu(\emptyset, 1)\mu(1, 1)\mu(21, 21)\mu(\emptyset, 21) = (-1)(1)(1)(0) = 0 \\ &\mu(P(\eta)) = \begin{cases} 0, & \eta \text{ not normal} \\ -1^{|\pi| - |\sigma|}, & \eta \text{ normal} \end{cases}$$

э

イロト イポト イヨト イヨト



Breakdown Permutation: [132, 413265] $A^{\sigma,\pi} := \bigcup_{\eta \in E^{\sigma,\pi}} P(\eta)^{o}$

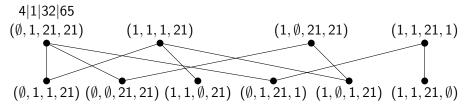


 $A^{132,413265}$

19/21

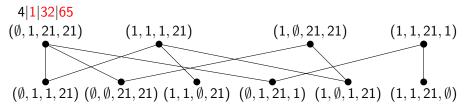
(四) (三) (三)

Breakdown Permutation: [132, 413265] $A^{\sigma,\pi} := \bigcup_{\eta \in E^{\sigma,\pi}} P(\eta)^{o}$



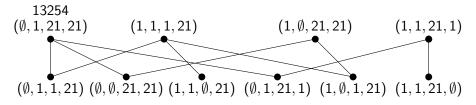
• < = • < = •

Breakdown Permutation: [132, 413265] $A^{\sigma,\pi} := \bigcup_{\eta \in E^{\sigma,\pi}} P(\eta)^{\circ}$



• < = • < = •

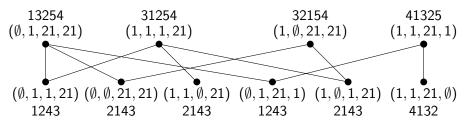
Breakdown Permutation: [132, 413265] $A^{\sigma,\pi} := \bigcup_{\eta \in E^{\sigma,\pi}} P(\eta)^{o}$



• < = • < = •

Breakdown Permutation: [132, 413265]

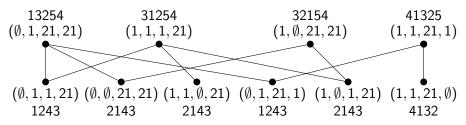
$$A^{\sigma,\pi} := igcup_{\eta\in E^{\sigma,\pi}} P(\eta)^{o}$$



.

Breakdown Permutation: [132, 413265]

$$A^{\sigma,\pi} := igcup_{\eta\in E^{\sigma,\pi}} P(\eta)^{o}$$

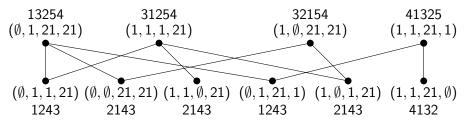




▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Breakdown Permutation: [132, 413265]

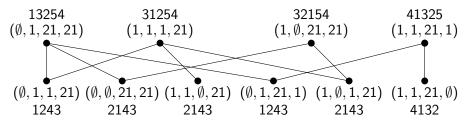
$$A^{\sigma,\pi} := \bigcup_{\eta \in E^{\sigma,\pi}} P(\eta)^{o}$$



$$\mu(A^{\sigma,\pi}) = \sum_{\eta \in \widehat{E}^{\sigma,\pi}} \mu(P(\eta)) - \sum_{\substack{S \subseteq \widehat{E}^{\sigma,\pi} \\ |S| > 1}} (-1)^{|S|} \mu(\bigcap_{\eta \in S} P(\eta))$$

.

$$A^{\sigma,\pi} := igcup_{\eta\in E^{\sigma,\pi}} P(\eta)^{o}$$



$$\mu(A^{\sigma,\pi}) = \sum_{\eta \in \widehat{E}^{\sigma,\pi}} \mu(P(\eta)) - \sum_{\substack{S \subseteq \widehat{E}^{\sigma,\pi} \\ |S| > 1}} (-1)^{|S|} \mu(\bigcap_{\eta \in S} P(\eta))$$
$$= (-1)^{|\pi| - |\sigma|} \operatorname{NE}(\sigma, \pi) - W(\sigma, \pi)$$

.

 $\mu(A^{\sigma,\pi})$

э

< □ > < □ > < □ > < □ > < □ > < □ >

 $\mu(A^{\sigma,\pi})$

э

 $\mu(A^{\sigma,\pi}) - \mu(W(\sigma, 2143))\mu(W(2143, \pi))$

20 / 21

(4) (日本)

$$\mu(A^{\sigma,\pi}) - \mu(W(\sigma, 2143))\mu(W(2143, \pi))$$

э

イロト イポト イヨト イヨト

$$\mu(A^{\sigma,\pi}) - \mu(W(\sigma, 2143))\mu(W(2143, \pi)) \\ - \mu(W(\sigma, 1243))\mu(W(1243, \pi)) = \mu(\sigma, \pi)$$

・ 何 ト ・ ヨ ト ・ ヨ ト

$$\mu(\sigma,\pi) = (-1)^{|\pi|-|\sigma|} \operatorname{NE}(\sigma,\pi) - \sum_{\lambda \in [\sigma,\pi)} W(\sigma,\lambda) W(\lambda,\pi)$$

< □ > < □ > < □ > < □ > < □ > < □ >

$$\mu(\sigma,\pi) = (-1)^{|\pi| - |\sigma|} \operatorname{NE}(\sigma,\pi) - \sum_{\lambda \in [\sigma,\pi)} W(\sigma,\lambda) W(\lambda,\pi).$$

3

$$\mu(\sigma,\pi) = (-1)^{|\pi| - |\sigma|} \operatorname{NE}(\sigma,\pi) - \sum_{\lambda \in [\sigma,\pi)} W(\sigma,\lambda) W(\lambda,\pi).$$

• Second term equals zero for 95% of intervals $[\sigma, \pi]$ where $|\pi| < 9$.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

$$\mu(\sigma,\pi) = (-1)^{|\pi|-|\sigma|} \operatorname{NE}(\sigma,\pi) - \sum_{\lambda \in [\sigma,\pi)} W(\sigma,\lambda) W(\lambda,\pi).$$

- Second term equals zero for 95% of intervals $[\sigma, \pi]$ where $|\pi| < 9$.
- Can compute Möbius function of rank 15 interval in 5 minutes compared to 14 hours using recursive formula.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$\mu(\sigma,\pi) = (-1)^{|\pi|-|\sigma|} \operatorname{NE}(\sigma,\pi) - \sum_{\lambda \in [\sigma,\pi)} W(\sigma,\lambda) W(\lambda,\pi).$$

- Second term equals zero for 95% of intervals $[\sigma, \pi]$ where $|\pi| < 9$.
- Can compute Möbius function of rank 15 interval in 5 minutes compared to 14 hours using recursive formula.
- First part has polynomial complexity and second part exponential complexity. Recursive formula has exponential complexity.

$$\mu(\sigma,\pi) = (-1)^{|\pi| - |\sigma|} \operatorname{NE}(\sigma,\pi) - \sum_{\lambda \in [\sigma,\pi)} W(\sigma,\lambda) W(\lambda,\pi).$$

- Second term equals zero for 95% of intervals $[\sigma, \pi]$ where $|\pi| < 9$.
- Can compute Möbius function of rank 15 interval in 5 minutes compared to 14 hours using recursive formula.
- First part has polynomial complexity and second part exponential complexity. Recursive formula has exponential complexity.

Thank You For Listening

・ 同 ト ・ ヨ ト ・ ヨ ト