Tournaplexes and their Applications to Neuroscience

Jason P. Smith (joint work with Ran Levi and Dejan Govc)

University of Aberdeen

30th April 2020

ORIGINAL RESEARCH ARTICLE

Front. Comput. Neurosci., 12 June 2017 | https://doi.org/10.3389/fncom.2017.00048

Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function

💹 Michael W. Reimann^ar, 🛐 Max Nolte^ar, 🌨 Martina Scolamiero², 🗾 Katharine Turner², 🌉 Rodrigo Perin³, 🚮 Giuseppe Chindemi^a, 2 Pawel Diotko⁴r, 👮 Ran Levi³r, 🚺 Kathryn Hess²⁺t and 🌉 Henry Markram^{1,3+}t

¹Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland

²Laboratory for Topology and Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

³Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

⁴DataShape, INRIA Saclay, Palaiseau, France

⁵Institute of Mathematics, University of Aberdeen, Aberdeen, United Kingdom

The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of

- \sim 30 000 Neurons
- $\bullet~\sim 8\,000\,000$ Connections
- 6 Layers
- 54 Neuronal Types
- Functional Model

- \sim 30 000 Neurons
- $\bullet~\sim 8\,000\,000$ Connections
- 6 Layers
- 54 Neuronal Types
- Functional Model

A Directed Graph

Study the structure of the brain graph

and

Stimulate the circuit and use the resulting activity to determine which stimulus was applied

$\mathsf{Directed}\ \mathsf{Graph} \longrightarrow \mathsf{Ordered}\ \mathsf{Simplicial}\ \mathsf{Complex}$

$\mathsf{Directed}\ \mathsf{Graph} \longrightarrow \mathsf{Ordered}\ \mathsf{Simplicial}\ \mathsf{Complex}$

Transitive Cliques \longrightarrow Simplices

(i.e those containing no directed cycles)

$\mathsf{Directed}\ \mathsf{Graph} \longrightarrow \mathsf{Ordered}\ \mathsf{Simplicial}\ \mathsf{Complex}$

Transitive Cliques \longrightarrow Simplices

(i.e those containing no directed cycles)

$\mathsf{Directed}\ \mathsf{Graph} \longrightarrow \mathsf{Ordered}\ \mathsf{Simplicial}\ \mathsf{Complex}$

Transitive Cliques \longrightarrow Simplices

(i.e those containing no directed cycles)

Structure

Function

 $\mathsf{Directed}\ \mathsf{Graph} \longrightarrow \mathsf{Geometric}\ \mathsf{Realisation}\ \mathsf{of}\ \mathsf{Simplicial}\ \mathsf{Set}$

$\mathsf{Directed}\ \mathsf{Graph} \longrightarrow \mathsf{Geometric}\ \mathsf{Realisation}\ \mathsf{of}\ \mathsf{Simplicial}\ \mathsf{Set}$

$\mathsf{Directed}\ \mathsf{Graph} \longrightarrow \mathsf{Geometric}\ \mathsf{Realisation}\ \mathsf{of}\ \mathsf{Simplicial}\ \mathsf{Set}$

$\mathsf{Directed}\ \mathsf{Graph} \longrightarrow \mathsf{Geometric}\ \mathsf{Realisation}\ \mathsf{of}\ \mathsf{Simplicial}\ \mathsf{Set}$

 $\mathsf{Directed}\ \mathsf{Graph} \longrightarrow \mathsf{Geometric}\ \mathsf{Realisation}\ \mathsf{of}\ \mathsf{Simplicial}\ \mathsf{Set}$

Directionality of clique σ :

$$dr_{\textit{local}}(\sigma) = \sum_{v \in \sigma} (\textit{indegree}_{\sigma}(v) - \textit{outdegree}_{\sigma}(v))^2$$

 $\mathsf{Directed}\ \mathsf{Graph} \longrightarrow \mathsf{Geometric}\ \mathsf{Realisation}\ \mathsf{of}\ \mathsf{Simplicial}\ \mathsf{Set}$

Directionality of clique σ :

$$dr_{\textit{local}}(\sigma) = \sum_{\mathsf{v} \in \sigma} (\textit{indegree}_{\sigma}(\mathsf{v}) - \textit{outdegree}_{\sigma}(\mathsf{v}))^2$$

$$dr_{global}(\sigma) = \sum_{v \in \sigma} (indegree_G(v) - outdegree_G(v))^2$$

Directionality Filtrations

Distinguishing Graphs Using Tournaplex

Data: 200 Erdős-Rényi graphs with edge $i \rightarrow j$ present with probability $\begin{cases} 0.25, & \text{if } i < j \\ q, & \text{if } i > j \end{cases}$

Distinguishing Stimuli

Data: 45 spike trains on Blue Brain model, 5 repetitions of 9 different stimuli

Thanks for Listening!

Many Thanks to the Blue Brain Project

Complexes of Tournaments, Directionality Filtrations and Persistent Homology arXiv:2003.00324